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Abstract  

The electricity distribution sector in Kenya has witnessed exponential growth over the last decade. The growth is 

underpinned by the Kenya National Electricity Strategy, which seeks to achieve universal access to electricity by 2022. The 

increased grid intensification has place increasing demands on power system reliability, quality and efficiency. In addition, 

the increased penetration of distributed generation and regional interchanges, have given rise to the need for improvements 

in power system planning, operation and control. Consequently, there are rapid advances in adoption of information and 

communication technologies. Some of these include: advanced metering infrastructure, distribution and asset condition 

monitoring sensors. The proliferation of these technologies has led to the rapid generation of vast amounts of variable energy 

data. To unleash the full value of this data, there is immense potential for the application of big data and machine learning 

techniques in electricity distribution. This paper not only offers an overview of these tools, but also presents sample use 

cases and proposed use cases. Further, it presents overview of technical challenges, change readiness and risks of adoption of 

these tools. 
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 Introduction  

The Kenyan electricity sector is experiencing significant growth in both the scale of grid extensions and system 

complexity. The key underpinnings of the growth include: increased geographical coverage of the grid, 

increased grid customer base, proliferation of smart grid technology in grid operation and customer relationship 

management, increased penetration of non-programmable renewable energy systems, interconnection to 

neighboring utility grids and regional power pools and the increased uptake of distributed generation. The result 

of all these features is the generation of huge amounts of variable, high velocity data from all facets of the 

electricity sector; from electricity generation, transmission, distribution and retail.  

 

Traditional power system analysis has been the sole standard for techno-economic planning and analysis of 

the utility grid. However, as mentioned before, the complexity of the grid is increasing. As such, traditional 

power system simulation is severely limited when subjected to high volumes of high speed, variable data. Power 

system simulation tools lack flexibility to extensively interface with other data sources that offer more analytical 

value. As a consequence, efficient and suitable data management and analysis is required to leverage this large 

amounts of structured and unstructured data to meet the demands of planning, operating and maintaining a 

modern power grid. This is the gap that Big Data technology and machine learning analytics can fill. 

 Big Data and Machine Learning 

2.1 Big Data 

Big data  generally refers to vast sets of structured and unstructured data [1]. For data to be classified as big 

data, it should have the following characteristics [2]: 

I. Volume – The name “Big Data” in itself implies enormous data. Size of data is a key determinant in 

obtaining valuable insights out of data. In the context of the power system, real time monitoring of 

equipment, customer transactions and energy data inherently creates massive volumes of data. 

II. Variety – This refers to both the source and nature of the data. Aside from structured spreadsheets and 

databases, the big data context includes a wide variety of source including photos, videos, sensor data, 

audio etc. The variability of unstructured data presents certain issues for storage, mining and analysis 

of data 

III. Velocity – The term 'velocity' refers to the speed of generation of data. In the context of the power 

system, meter data, customer management systems and SCADA are examples of sources of high speed 

data.  

IV. Veracity – This refers to the trustworthiness of the data  

The big data ecosystem in the power system is summarized in the figure below: 
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Figure 1: Big Data and Power Systems 

Obtaining value from big data using traditional database and business intelligence approaches has over time 

proven to be technically and financially challenging enterprise. As such, technology has evolved, demanding 

specific technology for the storage, processing and analysis of big data. This is the province of big data 

technologies. 

2.2 Machine learning 

Machine learning is an important branch of artificial intelligence [3]. It uses largely obscure statistical tools that 

allow machines to improve on tasks with experience. Machine Learning algorithms enable the computers to 

learn from data, and even improve themselves, without being explicitly programmed. The basic premise of 

machine learning is to build algorithms that can receive input data and use statistical analysis to predict an 

output while updating outputs as new data becomes available. 

Machine learning implementations are classified into three major categories, which are outlined below in 

turn. 

I. Supervised learning: An algorithm learns from example data with provided categories or classes. The 

algorithm learns from existing data, and is then able to correctly classify new data into the predefined 

classes. An example would be to predict whether an action lead to a power outage or not. 

II. Unsupervised learning: In this case, the algorithm is left to learn and decide the data patterns on its 

own. It achieves this by observing the degree of similarity between data points, and then deciding on 

the optimum clustering approach. Applications include: recommender systems for online purchases, 

electricity customer segmentation and fraud detection.  

III. Semi-supervised learning: In this case the model is fed a dataset with some of the target outputs 

missing from the training dataset.  

IV. Reinforcement learning: The machine seeks to optimize the solutions after each cycle of learning using 

a feedback loop. Applications include computer chess engines, self-driving cars and self-healing power 

systems 

2.3 Big data and machine learning in Power systems 

Within the power distribution sector, machine learning is used within a big data context to offer solutions in 

descriptive, predictive and prescriptive analytics. Descriptive analytics uses historical data to explain 

observations, predictive analytics leverages machine learning to predict future occurrences based on historical 

data. Prescriptive analytics seeks to offer recommendations based on insights gained from analytics. The 

interaction between big data and machine learning is illustrated below. 



 

Figure 2: Big Data, Machine Learning in Context [4] 

In the context of the electricity value chain, the following possible use cases are identified. 

 

 

Figure 3: Big Data and Machine Learning Use Cases In the Electricity Value Chain 

The core advantages of machine learning in big data analysis is the ability of a machine learn automatically, 

handle large varieties of data, continuous self-improvement, and the breadth of its applicability. Sample use 

cases are presented below in turn. 

 Machine Learning- Sample Use Cases 

3.1 Case 1: Unsupervised Learning: Anomaly/Fraud Detection 

In detecting anomalies, the model seeks to establish a baseline for what it considers anomalous, and what if 

considers normal. It achieves this by learning from both historic and live data. With anomalies detected, it is easy 

to flag an anomalous occurrence in real time and precipitate corrective action, which will in turn reduce overall 

equipment downtime and failure. This case study involved analysing energy consumption data from a customer 

with a history of suspicious variations. An unsupervised learning model – Isolation Forests, was used to identify 

anomalies in the time series current data. With the anomaly range identified, it is possible to flag such issues ahead 

of time, before a business loss is incurred. 

The plot below visualizes normal and anomalous readings from energy meter readings. 
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Figure 4 :Anomaly Detection Using Unsupervised Learning 

 

3.2 Use Case II: Supervised Learning 

 Customer Demand Forecasting 

It is of interest for a power distributor and consumers as well, to wish to not only keep tabs on their electricity 

costs, but also to afford themselves a level of predictability in consumption. Machine learning finds its use in 

this context. This case involved mining of data from a meter reading portal, for a certain customer, over a 1-year 

period, and deploying a Decision Tree Regressor model to identify consumption trends. Decision tree belongs to 

a class of models known as “Tree Based Models”, which builds regression or classification models form of tree 

structures, by using statistical tools to breakdown data into subsets.  

The meter data was pre-processed, split into a “training” dataset and a “testing” dataset. The training dataset 

is used by the model to identify the underlying patterns in consumption and attempt predictions on it, while the 

test dataset is used to validate the model. If the accuracy score of the model is high, then the model can be deployed 

in a real use case.  

The dataset in question was pre-processed, and then used to train and evaluate the model. The model 

predictions are then visualized versus the actuals 

.  

 
Figure 5: Customer Load Prediction Using Supervised Learning

 
Figure 6 :Customer Demand Forecasting 

 Solar PV Plant: Prescriptive Maintenance 

Kenya presently has over 100MW of installed grid-scale solar pv systems. The sheer size of these plants, as well 

as the non-programmable nature of the resource, presents challenges for both grid operators and solar power plant 

developers. A key element, is the need to monitor performance of the plant, by comparing it to an ideal “digital 

twin”. This comparison allows for identification of performance deviations due to component failure, shading or 

dust. This case utilized production data from a real solar pv power plant in South Africa, and compared its 

performance to an ideal representation of the plant. The digital twin utilized a linear regression model, which 

employed component data and weather/climate data obtained from weather APIs.  



The actual power output was the resulting predictions was then compared to the expected ideal, and the 

anomalies from each date identified for prescription of the adequate maintenance intervention. 

 

 
 

Figure 7: Solar Pv Plant Performance Monitoring 

 Risks and Change Readiness   

Plea The use cases above have presented a strong case for leveraging machine learning and big data tools in 

power systems planning, operations and maintenance. However, there are requirements for adoption and 

attendant risks. These are summarized as below: 

 Data Security: Some of the more efficient and powerful tools leverage cloud solutions. Cloud services 

bring with them serious concerns with information security 

 Data Architecture and Availability:  Machine Learning algorithms require massive training datasets. 

These datasets should be of good quality and unbiased. This is a challenge in a sector that is yet to fully 

automate processes. 

 Value chain synergies. For instance, implementation of Automatic Generation Control (AGC) would 

require synergies between the System Operator, the TSO and Generating entities. AGC can then 

leverage machine learning to optimize dispatch and ensure system security. 

 Capacity Gaps: There is a dearth of engineers in the sector capable of leveraging big data and machine 

learning in grid planning, operations and maintenance. There would have to be deliberate capacity 

building in this area for active uptake to occur. 

 Conclusions  

The global transition to smart utilities is inevitable, and so is the widespread application of big data and machine 

learning in the planning, operation and maintenance of the Kenyan utility grid. The utility sector needs to create 

synergies that would ensure the mainstreaming if this technology in grid operation. The expected benefits of the 

technology outweigh the risks.  The result would be a more efficient, reliable, secure and affordable electricity 

supply. 
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