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Abstract 

3D model representation is important in enhancing geotechnical site characterization. It 

was initially widely used in geologic investigations. Due to its increasing demand in 

geotechnical engineering, there has been an upsurge in its application in subsurface 

investigations. Similarly, more dedicated software are being developed to support 

application demands.  This study reviewed progress of 3D modelling in geotechnical 

investigations including current practices and opportunities for improvement. It showed 

that 3D modelling of geotechnical investigations has been popularly used in subsurface 

risk assessment, visualization, and identification of important target sections or 

occurrence of resources such as quarry materials, groundwater, or hard stratum. These 

applications are supported by numerous standalone software or add-on computer scripts 

or packages. However, most software are still lacking some important functionalities 

such as uncertainty assessment. Independent computer scripts seem to break this 

limitation but still need more improvements and wide application. An example of this 

application was shown in a case study in Mombasa Kenya, where 3D modelling potential 

was used to identify weak subsurface sections, 3D visualization, and identification of 

groundwater in a project site for construction of an inland container depot. 
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1. Introduction 

Geotechnical investigation is normally carried out to assess site suitability for 

construction of a proposed project. It helps to determine the strength and behaviour of 

the ground and construction materials and to analyze potential risks to the proposed 

construction (Bo, 2022; Look, 2007). Subsurface investigation focuses on uncovering 

buried characteristics beneath the surface through inversive methods (such as drilling, 
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excavation trenches/pits, etc.) or non-inversive methods such as sounding s or a 

combination of both methods (Hunt, 2007). Inversive methods provide direct actual 

measurements or observations in narrow openings through the subsurface profile. They 

also allow subsurface sampling for further laboratory testing and analysis.  Hence, they 

are traditionally preferred even though they are cumbersome and cover only limited 

discrete points in a proposed project site (Longoni et al., 2012).  This article illustrates 

how they have been or can be enriched to improve their representation of geotechnical 

properties of a construction site.  

Methods for subsurface geotechnical investigations have evolved over the years. The 

most prominent old technique was the digging of pits and trenches to access soil and rock 

features below the surface  (Griffiths, 2014; Hool and Kinne, 1923). This method was 

improved by the advent of the drilling technology. This technology improved the 

efficiency and depth of digging in response to the increasing demand for space for urban 

growth, infrastructure development, resource exploration, and waste disposal (Brady et 

al., 2017; Reiffsteck et al., 2018). Instrumented and smart drilling have further improved 

the drilling technology (Alqadad et al., 2017). Furthermore, integrated application of 

drilling technology and non-inversive methods such as geophysical sounding and remote 

sensing have made tremendous improvements in subsurface investigations (Devi et al., 

2017; Sulistijo and Anwar, 2013). There are still challenges with data handling that is 

commensurate with advances in equipment for subsurface investigations. This study 

reviewed opportunities for data handling to improve subsurface characterization of 

geotechnical properties.  

Subsurface geotechnical investigations are not without challenges. The challenges often 

encountered include inaccurate equipment, heterogeneity of target site, presence of 

underground utilities (e.g., pipes, electrical lines, etc.), variable fill material, groundwater 

flow, weather conditions, and site access and safety (Otake and Honjo, 2022; Zhang, 

2011). There are also data challenges particularly in sample selection prior to 

investigation, data mining, and visualization of the final investigation outcome. Data 

handling challenges are also observable in situations involving integrated use of different 

equipment, equipment generating large data, and time-series data (El Sibaii et al., 2022, 

2022). Recent developments in building information modelling (BIM), GIS, and 

statistical modelling software have helped to improve efficient and accurate geotechnical 

data handling (Bui et al., 2016). This paper reviewed advancements in geotechnical 
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investigation data representation with particular focus on three-dimension (3D) data 

management.  

Inversive subsurface geotechnical investigations are mostly given in one-dimensional 

(1D) representation known as borehole log. The log shows properties of soil and rock 

materials down the vertical profile (Hunt, 2007; Wang et al., 2022). Although 1D 

representation of geotechnical investigations is reliable because it contains primary 

observations/measurements at the sampled locations, it does not show spatial variations 

between observation points in a project site. Subsurface geotechnical conditions in most 

project site are naturally varied, which require many spatially located observation 

locations for adequate characterization (Caballero et al., 2022). Geographic Information 

System (GIS), geostatistics  and non-inversive investigation methods have been used to 

overcome the limitations of 1D borehole logs (Awan et al., 2022; Liu et al., 2023; Orhan 

and Tosun, 2010). These 2D approaches have a better representation of spatial variations 

of geotechnical properties. They can portray spatial variations either in a vertical plane 

(such as in cross-sections) or horizontally across the landscape.  Three or more 

dimensional visualization is the ultimate representation since it combines both vertical 

and horizontal dimensions in one illustration (Dong et al., 2015; Hack et al., 2006; 

Petrone et al., 2023). This paper analyzed the potential of 3D modelling in subsurface 

geotechnical investigations.  

2. 3D Modelling Of Geotechnical Investigations 

Three-dimensional representation of geotechnical investigations is an illustration of a 

volumetric cross-section of the target site. It should show 2D variations of the 

geotechnical properties in an x-y plane either at each sampling depth (Figure 1a) or at 

each sampling transect (Figure 1b). The 3D model is an ensemble of the 2D maps in a 

project site (Figure 1c).  Different approaches have been proposed in the literature for 

developing 2D maps and 3D models. 
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Figure 1: Concept of 3D model for subsurface geotechnical investigations 

2.1 Approaches for 2D maps of subsurface geotechnical investigations 

2D map of geotechnical properties gives a cross-sectional slice of the subsurface. The 

slice is either vertical down the profile or horizontal across the landscape (Figure 1). The 

vertical cross-section produces a snapshot of subsurface stratigraphy from top (surface) 

to the bottom.  This type of cross-section is mostly produced by the geophysical sounding 

approach (Azrief Azahar et al., 2019; Romero‐Ruiz et al., 2018; Tsai and Lin, 2022) or 

series of borehole/excavation pits a long a transect line (Guan and Wang, 2021) (Table 

1). Geophysical approach uses electric, magnetic, sonic, radio, or seismic signals to 

determine orientation, depth, and geotechnical characteristics of earth materials within 

range of the signals.  The signals are either emitted and recorded by specialized 

instrument(s) or are naturally emitted from the earth and recorded by the instruments 

(Chandran and Anbazhagan, 2017). 2D vertical cross-sections are used to determine 

orientation and depth of subsurface strata, location of cavities or variation in strength of 

subsurface strata, thickness of strata, potential underground hazards to construction 

project, changes in geotechnical properties with subsurface depth, among others (Medhus 

and Klinkby, 2023; Paillet and Saunders, 1990; Soupios et al., 2007). They are also 

suitable for evaluating risk to existing foundations. Despite their importance in 

subsurface characterization, vertical cross-sections are limited to the transect line or 

excavation boreholes/pits in which they are developed. Resultant maps from the cross-
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section are assumed as representative of the entire project site, which can be a source of 

uncertainty when characterizing the entire construction site. 

Table 1: Approaches for 2D mapping of subsurface geotechnical characteristics 

Cross -section Approach Techniques Reference  

Vertical  

Geophysical 

sounding 

Seismic (Bačić et al., 2020) 

Potential (Gravity, electric, 

magnetic, etc) 

(Dezert et al., 2019) 

Electromagnetic (Auken et al., 2017) 

Sonic (McNally, 1990) 

Drilling/Excavation Borehole, Pit excavation (Hunt, 2007) 

Horizontal 

Drilling and GIS Geostatistics (Pinheiro et al., 2018) 

Remote sensing 

Satellite  (Chen et al., 2016) 

Ground Penetrating Radar (Siggins, 1990) 

Electromagnetic Induction (Pellerin, 2002) 

The horizontal cross-section of the subsurface portrays a stratum layer at a given depth. 

It’s produced by mapping spatial distribution of many observations in the project site or 

through remote sensing techniques such as satellites, aerial photographs, and proximal 

sensing (Table 1) (Liu et al., 2016; Von Hebel et al., 2014). Most Geographic Information 

System (GIS) approaches depict this type of cross-section when they map geotechnical 

properties of the site at a given depth. This approach uses geostatistical methods to 

integrate observations at discrete locations to produce maps of the geotechnical 

properties (Ahmed et al., 2020; Aldefae et al., 2020; El-Banna et al., 2023; Labib and 

Nashed, 2013). 

2.2  Approaches for 3D model for subsurface geotechnical investigations 

A 3D model for geotechnical investigations endeavors to integrate both vertical and 

horizontal cross-sections of a project site into a volumetric solid representation of 

subsurface geotechnical conditions. It’s increasingly being demanded in geotechnical 

investigations since it portrays a complete subsurface ground condition more than 1D or 

2D representations (Kahlström et al., 2021; Petrone et al., 2023). Three approaches are 

available in the literature for developing 3D models for geotechnical investigations: 1) 

modelling of geotechnical interfaces, 2) fusion of 2D layers in a GIS, and 3) three-

dimensional geotechnical objects (Table 2).  
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Table 2: Approaches for 3D modelling of geotechnical investigations 

Approach Method Reference 

Geomodelling of 

geotechnical 

interfaces 

Surface mesh generation (Frank et al., 2007) 

Planar mesh and interpolation (Mallet, 1997) 

Fusion of 2D layers 

Machine learning (S. Wu et al., 2021) 

Geostatistics and GIS (Kim et al., 2020) 

Sequential gaussian simulation (Aghamolaie et al., 2019) 

Finite element (Hemeda, 2019) 

3D geotechnical 

objects 

Building Information Model (Satyanaga et al., 2023) 

Wireframe and voxel (Moore and Johnson, 2001) 

Intersection of triangulated surfaces (Elsheikh and Elsheikh, 

2014) 

Volumetric solid model (Lemon and Jones, 2003) 

Approaches such as geo-modelling of geotechnical interfaces and building of 3D 

geotechnical objects are mostly geological methods popularly used by geologists in large 

projects. They have been used in large-scale hydrogeologic frameworks for groundwater, 

geologic hazards, mineral exploration, etc. (X. Wu et al., 2021). (Ozmutlu and Hack, 

2006) have also shown their application in feasibility studies for subsurface stability in 

landslide-prone areas.  However, they are not so popular in geotechnical engineering 

especially in small projects and where input geotechnical observations are few (Mei, 

2014). Moreover, they are currently not adequately amenable to uncertainty analysis. 

Approaches involving fusion of model elements are the most popular in small-scale 

geotechnical investigations. They have been applied successfully in small and large 

projects alike since they integrate geological modelling approaches with GIS and 

geostatistics of geotechnical observations and discrete locations (De Rienzo et al., 2008; 

Masoud et al., 2022). Since they include statistical methods, they can also be used to 

develop uncertainty analysis of the 3D model. 

All approaches for 3D modelling of geotechnical investigations involve aspects of data 

acquisition, data preparation and processing, model testing, and model application (El 

Sibaii et al., 2022). These four-stage processes differ with geotechnical investigation 

projects. However, if they are harmonized and standardized then they can be a useful 

input into the Building Information Modelling (BIM) paradigm. BIM paradigm proposes 
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digital collection and sharing of geotechnical and construction information of projects 

(Eastman et al., 2018; El Sibaii et al., 2022). Presently, there are no clear standards and 

harmonization procedures in BIM to support its extension to geotechnical investigations 

and 3D modelling (Valeria et al., 2019). An initial step to create strategies for BIM-like 

information management and data-sharing of geotechnical information would be the 

development of proper data management. This has been observed in the literature and 

proposition of software for kickstarting the process (Hamman et al., 2017; Lee et al., 

1990; Montanari and Previatello, 1979). 

3. Software for 3D Modelling 

Development of software for modelling geotechnical investigations was originally 

motivated by the programming progress in the mining and gas exploration sectors. The 

first attempt of computer aided investigations was an adaptation of the then mining 

software, which opened the way for more customization (Orlić, 1997).  These attempts 

were mainly software capable of developing 1D or 2D models. The main challenges to 

quick development of dedicated software for 3D models for geotechnical investigations 

were: 1) lack of adequate understanding and detailed data for subsurface geotechnical 

characteristics, 2) demand for geotechnical investigations was still nascent, and 3) there 

were few experts to mount such a trivial demand (Toll and Barr, 2001). Progress was 

made with development of software based on finite element method, which is limited in 

robust characterization of variations of geotechnical properties in vertical and horizontal 

dimensions.  The software have been documented in geotechnical and geo-environmental 

software directory1. Some of these are shown in Table 3, which shows that they are 

mostly commercially available.  

Table 3: Software for 3D modelling of geotechnical investigations 

Software Visualization License 
site 
characterization 

Other 
functionality Company 

Subsurface 
analyst yes Commercial Yes   
Vulcan 
explore 
bundle yes Commercial    
WLD 3D 
visualizer yes Commercial    

Slide 3D yes Commercial  

Numerical 
modelling Rocscience 

 
1 http://www.ggsd.com/, accessed on 23 October 2023 
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Software Visualization License 
site 
characterization 

Other 
functionality Company 

Plaxis 3D yes Commercial Yes 
Numerical 
modelling Seequent 

RS3 yes Commercial yes 
Numerical 
modelling Rocscience 

Adina  Commercial  

Numerical 
modelling  

Adonis yes 
Open-
source  

Numerical 
modelling  

Diana finite 
element 
analysis yes Commercial Yes 

Numerical 
modelling Diana FEA 

Irazu  Commercial  

Numerical 
modelling Geomechanica 

Midas GTS 
NX  Commercial  

Numerical 
modelling Midas IT 

GEMS  Commercial  

Numerical 
modelling GEMS 

TatukGIS  Commercial  

Numerical 
modelling Tatuk GIS 

CESAR-
LCPC yes Commercial  

Numerical 
modelling Itech 

Versat-P3D  Commercial  

Numerical 
modelling  

Leapfrog 
Works yes Commercial  

Data 
management Seequent 

Oasis 
montaj yes Commercial  

Data 
management Seequent 

Res3DInv  Commercial  

Data 
management Seequent 

HoleBase yes Commercial  

Data 
management Seequent 

Geo5 yes Commercial Yes 
Engineering 
geology Fine Software 

GST yes Commercial  

Data 
management 

GiGa 
infosystem 

Map3D yes Commercial Yes  

Mine 
Modelling Pty 
Ltd 

Stress 
Transform  

Open-
source  

Stress 
calculation  

AutoCAD 
Civil 3D yes Commercial  Design Autodesk 

Recently, open-source platforms and computer packages have been developed to support 

wide program or computer script development. They include GIS software, statistical 

software, and numerical modelling software. They have facilitated the development of 

numerous add-on packages and open-source scripts for most computer applications in 

geo-environmental engineering sectors. For example, GemPy, which is a python script, 

has shown tremendous applications in 3D modelling of subsurface geologic 



African Journal of Engineering Research and Innovation. Volume 2. No. 1, March 2024 

27 

 
 

investigations (De La Varga et al., 2019). (Bullejos et al., 2022) also developed a python 

code for 3D visualization of borehole strata using borehole logs. Many more python 

scripts have since been produced for soil and rock properties, albeit with focus on geology 

or groundwater characterization (Rasmussen, 2020; Schorpp et al., 2022).  

4. Application Of 3D Models in Geotechnical Investigations 

  4.1. Risk assessment 

Geotechnical investigations for risk assessment can be taken either before or after 

construction of a project or foundation. Most assessments done before construction have 

limited restrictions compared to those carried out after construction. 3D models play 

crucial role in portraying volumetric representation of the subsurface conditions by 

locating the orientation and magnitude of risk factors such as fault lines, hollow sections, 

weak strata, presence of utility lines, groundwater potential, etc. They are also suitable in 

forensic projects where restrictions and precisions are involved. (Marache et al., 2009) 

used 3D modelling to show infrastructure damage due to differential settlement in 

France. (Liu et al., 2021)used it to develop geo-hazard monitoring and early warning in 

China.  (Venmans et al., 2015) used 3D modelling approach in the Netherlands to map 

geotechnical risk for infrastructural works in Deltaic area.  

Most applications for risk assessment use dedicated 3D software for geotechnical and 

geologic modelling. There are very few cases in literature where independent or add-on 

scripts have been used although they have potential. The scripting approach may be more 

robust given that they are amenable to manipulation to suit changing characteristics of 

risk assessment demands. The scripts can be used to integrate geophysical methods and 

limited drilling to produce the 3D models. (Cueto et al., 2018) used this approach to map 

subsurface karst sinkholes in Saudi Arabia. The same approach was also used by (Arisona 

et al., 2020) to map subsurface voids in Kinta Valley in Malaysia.  

In the risk assessment applications, 3D models are used to locate depth of the risk from 

the soil surface and the distance to the construction/foundation. The models also show 

extent of the risk and danger it poses to the construction. 

4.2  Visualization 

3D models of geotechnical investigations give a realistic representation of actual 

orientation of the subsurface characteristics than 1D or 2D models. Hence, they are most 
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suitable where subsurface complexity cannot be adequately represented by 1D or 2D. 

Through 3D visualization, it is possible to view neighborhood relationships and total 

number of strata in a project subsurface (Guo et al., 2021). This is particularly important 

in areas where there is demand for subsurface space utilization and limited land space for 

horizontal expansion for infrastructure development. In such cases, 3D visualization 

gives more clarity of available and suitable underground space for expansion of structural 

development. There are many examples in the literature which have demonstrated these 

applications. For example, (De Rienzo et al., 2008) used 3D to improve visualization of 

subsurface characteristics in underground civil planning  in Turin, Italy.  (He et al., 

2023) used 3D visualization to show stratigraphic distribution of a subsurface in 

Tongzhou in China. A similar approach was also used by (Masoud et al., 2022) to 

improve visualization of subsurface for urban planning in Medina, Saudi Arabia. 

4.3  Location of target points 

Geotechnical investigations facilitate identification of target sites and volume of 

resources such as groundwater, rock, minerals, quarry materials, etc. 3D model helps to 

illustrate multi-dimensional aspects of these characteristics to improve subsequent 

engineering designs where they are involved. For example, 3D model can adequately 

illustrate the depth and extent of hard layers when designing pile foundation (Priya and 

Dodagoudar, 2017; Touch et al., 2014). Its application in the mining industry has been 

well practiced over the years (Akiska, 2013; Kaufmann and Martin, 2008). They have 

also been extensively used in hydrogeologic exploration of groundwater occurrence and 

impact of groundwater fluctuation to foundation stability (Beygi et al., 2020; Mielby and 

Sandersen, 2017). (Vanneschi et al., 2014) used 3D modelling in excavation activities 

such as determination of volume of quarry material at a proposed site. 

Although there are successful applications of 3D modelling in the literature for locating 

subsurface target site and volume of resources, there is no clear information of how these 

applications incorporate uncertainty analysis. Most applications use software or methods 

that overlook the importance of uncertainty analysis in the 3D models. It is important to 

incorporate this aspect into the applications to improve confidence and accuracy of 

subsequent utilization of the application results.  
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4.4  Example case study in Mombasa Kenya 

3D geotechnical model was developed for a construction project in Kibarani Inland 

Container depot in Mombasa County in Kenya (Figure 2). 32 boreholes were drilled 

using motorized percussion driller and standardized penetrometer test (SPT) according 

to ASTM D1586 procedure. The project site was initially used as a municipal waste 

dumping area for more than 30 years. Hence, the top layers were mainly waste material 

and had to be removed upto 15 m to 20 m prior to geotechnical testing. 

 

Figure 2: Construction project site 

4.5. Data collection 

Geotechnical investigations were carried out by drilling georeferenced boreholes (Figure 

1) and carrying out in-situ testing (Standard Penetrometer Test (SPT) and vane shear test) 

and sampling for laboratory analysis of Atterberg limits (liquid and plastic limits). The 

tests and sampling were carried out on soil material at irregular depth intervals up to the 

rock restriction. SPT was carried out according to ASTM D1586/D1586M-18e1 and vane 

shear test according to ASTM D2573-08 standards. Samples for laboratory analyses were 

collected using the split barrel on the SPT equipment (Hunt, 2007). Liquid limit (LL) and 

plastic limit (PL) tests were done according to ASTM D4318. SPT test produced number 

of blows (SPT-N) to push the rod to penetrate 15 cm into the soil, vane shear test 
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produced undrained shear resistance in kN/m2, and Atterberg limits test produced liquid 

and plastic limits (Table 4).  

Table 4: Range of values of soil properties from geotechnical site investigation  

No. 
Depth 
(m) 

SPT-N 
(blows) Resistance (kN/m2) Liquid limit (LL) (%) Plastic limit (PL) (%) 

1 1 - 11 3 - 30 33 - 101 22 - 48 13.6 - 34.7 
2 2.5 - 13.6 5 - 32 38 - 121 27 - 64.2 12 - 33.9 
3 4.5 - 22 5 - 32 38 - 133 27 - 50 12 - 33.9 
4 10 - 28 15 - 37 45 - 189 25 - 44 13 - 30 

SPT counts in boreholes were recorded at 1, 2, 5, 10, 15, 20, 25, and 30 m below the 

surface. These depth intervals were standardized to ensure uniform intervals for all 

boreholes in the project site. The tests were used to develop 3D model and show model’s 

importance in risk assessment, visualization, and determination of presence of 

groundwater which may impact foundation design. 3D model was developed using a 

computer script written in R (R Core team, 2023). Risk assessment targeted presence of 

weak layers (low SPT Counts) within the subsurface. They are expected to cause uneven 

settlement that can cause foundation failure. Visualization targeted stratigraphic 

orientation of the subsurface to identify suitable areas that can be used to support different 

foundation designs.  

The 3D model showed that shoreline areas had rather weak soil/rock material that may 

not support high stress foundation (Figure 3). The central parts of the site also seem to 

portray weak subsurface strata and fractured rocks. Borehole logs around these areas 

showed groundwater presence between 19m and 23 m below the surface. The northern 

parts and southern tip undulating into the Indian Ocean seem to have relatively deep soil 

with strong strata. There was no groundwater presence in these parts. Analysis of 

uncertainty showed that the areas with high SPT counts had relatively higher 

uncertainties than those with low SPT counts (Figure 4). This implies that even though 

the northern and southern parts of the project site are relatively strong, there may be local 

weak points that should be looked for during the design or construction. On the other 

hand, the central areas have high probability of bearing weak strata and should be targeted 

for low stress foundation applications. Uncertainty analysis in Figure 4 also shows that 

the top strata were more varied than the bottom strata. 
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Figure 3: 3D model of relative subsurface strength of project site 

 

Figure 4: Prediction width at 95% confidence interval for 3D SPT count 

5. Conclusions 

3D model representation is very important in enhancing geotechnical investigations and 

improving site characterization. It has been widely used in geologic investigations but 

not so popular with geotechnical investigations. This study reviewed progress of 3D 

modelling in geotechnical investigations including current practices and opportunities for 

improvement. It showed that there has been an increasing demand for 3D representation 

of geotechnical investigations, which pushed the growth in adoption of 3D modelling 
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techniques. The new techniques also complement the traditional investigation 

techniques. An indication of the growth in 3D modelling in geotechnical engineering is 

seen in the number of dedicated software that have since been developed. However, most 

dedicated software lack some important functionalities such as uncertainty assessment. 

Recent use of computer scripts as add-on to main software have seen improved versatility 

in incorporating uncertainty assessment in 3D models. They have a huge potential in 

opening up wide application of 3D modelling in geotechnical engineering. 

Three broad application areas for 3D modelling in geotechnical investigations are 

subsurface risk assessment, 3D visualization, and identification of important subsurface 

sections/points.  A case study application of 3D modelling was shown to summarize on-

going activities in the literature. 
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